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Abstract

Implications of nonlinearity, nonstationarity and misspeci�cation are con-

sidered from a forecasting perspective. Our model allows for small departures

from the martingale di¤erence sequence hypothesis by including a nonlinear

component, formulated as a general, integrable transformation of the I(1) pre-

dictor. We assume that the true generating mechanism is unknown to the

econometrician and he is therefore forced to use some approximating functions.

It is shown that in this framework the linear regression techniques lead to

spurious forecasts. Improvements of the forecast accuracy are possible with

properly chosen nonlinear transformations of the predictor. The paper derives

the limiting distribution of the forecasts�MSE. In the case of square integrable

approximants, it depends on the L2-distance between the nonlinear component

and approximating function. Optimal forecasts are available for a given class

of approximants.
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1 Introduction

Nonlinear models are extensively used in econometrics (for a description and analysis

of various nonlinear models see, for example, Granger and Teräsvirta (1993)). The

theoretical foundation for estimation of nonlinear, nonstationary models has been

developed fairly recently. Park and Phillips (1999) derived asymptotic results for

the sums of nonlinear transformations of integrated time series. They considered

three classes of nonlinear functions: integrable, homogeneous and exponential. They

show, for example, that partial sums of integrable functions that have a non-zero

Lebesgue measure converge in distribution to local times of the Brownian motion.

Their results have been applied to various nonlinear econometric models. Chang

et al. (2001) considered nonlinear regression with separably additive regression func-

tions. Chang and Park (2003) considered nonstationary index models, which extend

switching regressions to the stochastic trends framework. Hu and Phillips (2004)

studied nonstationary discrete choice models. Kasparis (2004) considered e¤ects of

functional form misspeci�cation on estimation, when the true and estimated models

involve nonlinearity and nonstationarity. He focused on convergence of estimators to

some pseudo-true values and detection of functional form misspeci�cation. Hong and

Phillips (2005) develop a linearity test of cointegrating relations.

An attractive feature of nonlinear models is �exibility that allows one to model

relationships between nonstationary and seemingly stationary variables. A linear re-

gression requires the dependent variable to have the same order of integration as the

right-hand side of the regression equation. However, it is known that nonlinear trans-

formations can change the memory properties of a process. Thus, contrary to linear

regressions, properly chosen nonlinear functions can link in a single equation variables

that appear to have di¤erent orders of integrations. Nonlinear functions that can be

used to model relationships between seemingly stationary and persistent variables

include Lebesgue integrable functions and asymptotically homogeneous functions of

degree zero (the distribution-like functions). For example, Chang and Park (2003)

modelled nonstationary switching behavior by adding a distribution type function of

the I(1) variable to a noise process.

There are many situations in economics that may require one to relate variables

of di¤erent orders of integration. A typical example is the predictive regressions liter-

ature in empirical �nance, which studies stock returns predictability. In a predictive
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regression, stock returns are regressed on lagged values of various �nancial and eco-

nomic variables such as the dividend-price ratio, earnings-price ratio or interest rates.

While most researchers agree that stock market returns are I(0), predictors such as

dividend-price ratio appear to have a stochastic trend component.

In predictive regressions, predictability is usually concluded on the basis of t-

tests for slope coe¢ cients. Often, it is implicitly assumed that non-zero in-sample

correlations found between regressors and stock returns can be used for construction

of out-of-sample forecasts. Many papers report statistically signi�cant slope estimates

(see, for example, Fama (1991) and Cochrane (1997) for surveys of the literature).

Despite the collected empirical evidence on in-sample relations between stock returns

and predictors, the out-of-sample predictability is still a controversial issue. Goyal

and Welch (2003, 2004) report that performance of out-of-sample forecasts based on

linear regression methods can be rather poor, while Campbell and Thompson (2004)

argue that there exists small but economically meaningful out-of-sample predictive

power, once restrictions on the coe¢ cients and forecasts are imposed.

The results in this paper imply that signi�cant regression slopes do not necessarily

indicate usefulness of the linear regression as a forecasting equation. Our model

allows for small departures from the martingale di¤erence sequence (MDS) hypothesis

by including an additive nonlinear component, formulated as a general, integrable

transformation of the predictor, which is assumed to be I(1). In this model, the

signal coming from the nonlinear component is very weak relative to the noise, as

implied by the properties of integrable functions and I(1) variables. An integrable

function approaches zero at a fast rate as the absolute value of its argument increases.

At the same time, a unit root process usually takes on very large negative or positive

values. As a result, the signal coming from the predictor (the nonlinear component)

is relatively strong only during rare events, when the unit root process visits the

neighborhood of zero. Such a generating mechanism provides for predictability only in

the extremely short run, which in the stock market example corresponds to a situation

where some relevant information may escape the attention of market participants only

for very short periods of time. The process modelled in this paper is oposite to that of

Kilian and Taylor (2003); they describe nonlinear mean-reversion, however, combined

with long-run predictability (they discuss forecasting of exchange rates).

It is natural to assume that the true data generating process (DGP) involving

nonlinear dependency is unknown to the econometrician, and he is therefore forced
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to use some approximating functions. Furthermore, the class of approximants used

by the econometrician does not necessarily include the true function. This paper

illustrates by the means of analytical asymptotic results that such a combination of

nonstationarity, nonlinearity and misspeci�cation leads to the results often seen in

the predictive regressions literature. Consider for example a linear regression, which

is the most popular approximating function. We show that, in this case, commonly

used diagnostic tools tend to indicate predictive power despite the fact that estimated

regression slopes converge to zero in probability. Moreover, we show that the out-

of-sample forecasts constructed from a predictive regression asymptotically have the

same mean squared error (MSE) as that of constant forecasts equal to the simple

historic average of the dependent variable. Hence, spurious forecasts occur: diagnostic

tools may indicate usefulness of the model, while, in fact, equivalent or better forecasts

may be obtained, if one completely ignores the information contained in the predictor.

The predictability in our model is very limited due to the nature of the DGP.

Nevertheless, out-of-sample forecasting accuracy can be improved by using square

integrable approximating functions instead of historic averages or linear regressions.

We derive the limiting distribution of the out-of-sample MSE. In the case of square

integrable approximants, it depends on the L2-distance between the nonlinear compo-

nent and approximating function. We show that, for a given class of square integrable

approximating functions, one can obtain the best forecasts in the MSE sense.

In this paper, we consider only the case of a single predictor, since this is the

situation usually studied in the predictive regressions literature. However, the frame-

work can be easily generalized to the case of multiple predictors with an additively

separable regression function.

The paper is organized as follows. Section 2 introduces the model and reviews

the asymptotic theory of nonlinear functions of integrated processes. In Section 3, we

consider the class of forecasts constructed as polynomials in the predictor. This class

contains predictive regressions as a special case. Section 4 discusses forecasting with

integrable approximants. Section 5 presents the predictability tests based on square

integrable transformations. We report simulation results in Section 6, and Section

7 provides an empirical example. Section 8 concludes. All proofs are given in the

Appendix.
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2 De�nitions and preliminary results

In this paper, we consider a nonstationary nonlinear model described by the following

assumptions.

Assumption 2.1. (a) yt = �� + f (zt�1) + ut; where �� is an unknown constant,

f : R ! R is an unknown nonlinear function, and f(ut; zt) : t = 1; :::; ng are random
variables such that

(b) zt = zt�1 + C (L) "t; where C (L) =
P1

k=0 ckL
k; and L is the lag operator;

(c) f((ut; "t) ;Ft) : t � 1g ; where Ft = � (f(us; "s) : s � tg) ; is a stationary and
ergodic MDS;

(d) z0 = 0:

Assumption 2.1(c) implies that the error process ut cannot be predicted from its

lagged values and the lagged values of the predictor zt: The assumption z0 = 0 in (d)

is imposed for convinience. The results of this paper essentially will not change if we

allow z0 to be of a more general form z0 = n
1=2c for some constant c: We make the

following additional assumptions concerning the innovations process f(ut; "t) : t � 1g :

Assumption 2.2. (a) E
�
(ut; "t)

0 (ut; "t) jFt�1
�
= � > 0 a.s. for all t:

(b) supt�1E
�
jutjh jFt�1

�
<1 for some h > 2.

(c) f"t : t � 1g are iid with E j"1jq <1 for some q > 4:

(d) C(1) 6= 0 and
P1

k=0 k jckj <1:
(e) The distribution of "1 is absolutely continuous with respect to the Lebesgue

measure and
��Eeik"1�� = o �k��� for some � > 0:

It is assumed that f belongs to the class of integrable regular (I-regular) functions

denoted by I.

De�nition 2.1. A function ' : R ! R is said to belong to the class of I-regular

functions, denoted by I, if
(a) ' is Lebesgue integrable.
(b)

R1
�1 ' (x) dx 6= 0:

(c) For some constants c > 0 and k > 6= (q � 2) with q > 4 given in Assumption
2.2(c), j' (x)� ' (y)j < c jx� yjk :

The class of I-regular functions and the smoothness condition in (c) were intro-

duced in Park and Phillips (1999). We make the following assumption concerning

f:
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Assumption 2.3. f and f 2 2 I.

Functions that satisfy Assumption 2.3 must have tails decreasing at su¢ ciently fast

rate. At the same time, since zt is an integrated process, it takes on very large negative

or positive values most of the time. As a result, f (zt�1) is usually close to zero, except

for the periods when zt�1 visits the neighborhood of zero. The integrated variable zt�1
becomes a useful predictor for yt only on such rare occasions. Furthermore, sample

paths of f (zt�1)+ut appear to be similar to the sample paths of the noise process ut
(see Section 6 for an example).

Assumption 2.1 de�ne a predictive model. An optimal forecast in the MSE sense

is given by byt (b�) = b�+ f (zt�1) ;
where b� is a Least Squares (LS) estimator of �: However, the optimal forecast is
infeasible if f is unknown to the econometrician. In this case, the econometrician is

forced to use some approximating functions instead of f:We assume that the class of

approximating functions considered by the econometrician does not include the true

function f; and the forecasts are constructed using a misspeci�ed model. We denote

the approximating function by g (�; �) ; where � is a vector of constants. The value
of � is chosen by the econometrician. In this paper, we consider two alternatives

for g (x; �). The �rst is a polynomial function in x; which includes the predictive

regression (g (x; �) = �x) and constant forecasts (g (x; �) = 0 for all x 2 R) as special
cases. Since the true DGP involves a square integrable function, the second type of

approximating functions considered here consists of square integrable functions in x.

The results of this paper are derived under so called �xed forecasting scheme (see,

for example, West and McCracken (1998)). The econometrician observes the data

f(yt; zt�1) : t = 1; :::; n1g : His objective is to construct one period ahead forecasts of
yt for periods fn1 + 1; :::; ng using the actual values of zt�1, which are observed before
yt is realized. While the results of this paper continue to hold true for short forecasting

horizons of more than one period, we do not consider long forecasting horizons, since

our model captures only very short-run predictability. The forecasting equation is

de�ned as byt (�; �) = �+ g (zt�1; �) ; (2.1)

where byt is the predicted value of yt; the function g is chosen by the econometrician,
and � and � are scalar and vector constants respectively. We assume that � and �
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are estimated from the training sample f(yt; zt�1) : t = 1; :::; n1g. Let
�b�;b�0� be an

estimator of (�; �0) : The econometrician uses the estimated version of equation (2.1)

in order to construct forecasts for the observations in the forecasting sample, which

consists of observations n1+1 through n. We assume that n1 = [nr] ; where r 2 (0; 1)
and �xed, and [�] denotes the integer part.
Following the approach of Diebold and Mariano (1995), in this paper forecasting

models are evaluated according to their out-of-sample performance relative to that of

a benchmark model. Speci�cally, we assume that the forecasts are evaluated with a

quadratic loss function:

Qn

�b�;b�� = (n� n1)�1 nX
t=n1+1

�
yt � b�� g �zt�1;b���2 � (n� n1)�1 nX

t=n1+1

u2t :

The �rst term in the above expression is the sample MSE of the series of forecastsnbyt �b�;b�� : t = n1 + 1; :::; no :
The second term is the MSE of the infeasible forecasts

f�� + f (zt�1) : t = n1 + 1; :::; ng :

The second term does not depend on the choice of the forecasting function or the

values of � and �, and, therefore, minimization of Qn (�; �) is achieved only through

minimization of the �rst component.

Write

� =

 
�2z �zu

�zu �2u

!
:

Under Assumptions 2.1(b)-(d) and 2.2, in large samples, the distribution of a process0@n�1=2z[nr]; n�1=2 [nr]X
t=1

ut

1A
can be approximated by the distribution of a two-dimensional Brownian motion with

the covariance matrix


 =

 
!2z !zu

!zu �2u

!
;
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where !2z = C(1)
2�2z is the long-run variance of the innovations of zt; and !zu is the

long-run covariance of ut and the innovations of zt : !zu =
P1

h=1E ("hu1) : Note that

the correlations between ut and the lagged values of "t are equal to zero due to the

MDS assumption.

We assume that the parameters in equation (2.1) are estimated by LS, which leads

to expressions of the form
P

t f (zt�1) : Asymptotically, partial sums of integrable

transformations of I(1) variables are approximated by local times of a Brownian mo-

tion. The local time (L) of the Brownian motion B at x 2 R is de�ned as

L (t; x) = lim
"#0

1

2"

Z t

0

1(x�";x+") (B(s)) ds;

where 1A is an indicator function of the set A � R: The local time measures the

amount of time that the Brownian motion B spends in the neighborhood of the point

x (see, for example, Chung and Williams (1990) for an introduction to local time).

The following result, due to Park and Phillips (1999, 2001), is the foundation of the

subsequent discussion.

Lemma 2.1. Let 'h : R ! R be a homogeneous function of degree h > 0; 'I 2 I,
and '2;I be such that '

2
2;I 2 I. Let wu and wz be two independent standard Brownian

motions. De�ne `(t) = !�1z Lz(t; 0); where Lz is the local time of wz: If Assumptions

2.1(b)-(d) and 2.2 hold, then for �xed 0 < s < r < 1 the following results hold jointly:

(a)
�
n�1=2

P[nr]
t=[ns] "t; n

�1=2P[nr]
t=[ns] ut

�
!d

�R r
s
db(t);

R r
s
du(t)

�
; where

(b; u)0 = 
1=2 (wz; wu)
0.

(b) n�1�h=2
P[nr]

t=[ns] 'h (zt�1)!d

R r
s
'h (b(t)) dt:

(c) n�1=2�h=2
P[nr]

t=[ns] 'h (zt�1)ut !d

R r
s
'h (b(t)) du(t):

(d) n�1=2
P[nr]

t=[ns] 'I (zt�1)!d

�R1
�1 'I (x) dx

� R r
s
d`(t):

(e) n�1=4
P[nr]

t=[ns] '2;I (zt�1)ut !d �u

�R1
�1 '

2
2;I (x) dx

R r
s
d`(t)

�1=2
W (1); where W

is a Brownian motion independent of (wz; wu) :

The initial condition on z0 has an e¤ect on the asymptotic results in Lemma

2.1(d) and (e) through the local time process. If one generalizes Assumption 2.1(d)

as z0 = n1=2c; the local time at zero process would be replaced with the local time at

�c (see, for example, Phillips et al. (2007)).

8



3 Forecasting with polynomials

In this section, we consider forecasts constructed as polynomials in lagged values of

the predictor. In this case,

g (zt�1; �) =

pX
j=1

�jz
j
t�1; (3.2)

where p is a positive integer chosen by the econometrician. For p = 1; equation (3.2)

reduces to a simple linear regression considered in the predictive regression literature.

In addition to Assumption 2.3, we assume that f satis�es the following condition.

Assumption 3.4. f(x)xp 2 I:

It is assumed that � is estimated by LS using the training sample. Collecting the

powers of zt , we de�ne:

Zt = (zt; : : : ; z
p
t )
0 ;

Zt = Zt � [nr]�1
[nr]X
s=1

Zs�1: (3.3)

The LS estimator of � and � in (3.2) is given by

b�n =

0@ [nr]X
t=1

Zt�1Z
0
t�1

1A�1
[nr]X
t=1

Zt�1yt;

b�n = [nr]�1
[nr]X
t=1

yt � [nr]�1
[nr]X
t=1

Z 0t�1
b�n: (3.4)

Suppose that the econometrician draws a conclusion regarding the predictability of

yt from a test based on the usual Wald statistic for �:

Fn = b�0n
0@ [nr]X

t=1

Zt�1Z
0
t�1

1Ab�n=b�2u;n; where
b�2u;n = [nr]�1

[nr]X
t=1

�
yt � b�n � Z 0t�1b�n�2 : (3.5)

We compare the forecasts constructed according to model (3.2) with a baseline
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model that assumes no predictability:

byt (�0; 0) = �0: (3.6)

Equation (3.6) is a particular case of a polynomial forecasting function. It depends on

a single parameter �0; which is estimated by the average of yt in the training sample:

b�0;n = [nr]�1 [nr]X
t=1

yt:

Similarly to (3.3), we de�ne

B(t) = (b(t); : : : ; b(t)p)0 ;

B(t) = B(t)� r�1
Z r

0

B(s)ds;

where the Brownian motion b as in Lemma 2.1. The following theorem describes the

asymptotic behavior of the estimators b�n and b�n; test statistic Fn; and loss function
Qn: Let Dn = diag (n; : : : ; np).

Theorem 3.1. Under Assumptions 2.1-3.4,
(a) n1=2D1=2

n
b�n !d 	; where

	 =

�Z r

0

B(s)B(s)0ds

��1 Z r

0

B(s)du(s)

�r�1`(r)
�Z 1

�1
f(x)dx

��Z r

0

B(s)B(s)0ds

��1 Z r

0

B(s)ds: (3.7)

(b) n1=2 (b�n � ��)!d r
�1
�
`(r)

R1
�1 f(x)dx+ u(r)�	

0 R r
0
B(s)ds

�
:

(c) Fn !d

�R r0 B(s)B(s)0ds�1=2	=�u2 :
(d) For p � 0; n1=2Qn

�b�n;b�n�!d (1� r)�1 (`(1)� `(r))
R1
�1 f

2(x)dx:

(e) For p > 0; n
�
Qn

�b�n;b�n��Qn �b�0;n; 0�� !d �; where the support of the

random variable � includes the negative and positive parts of the real line.

Part (a) of the theorem implies that b�n converges in probability to zero. When
rescaled by n1=2D1=2

n , in large samples, its distribution can be approximated by the

distribution of the random variable de�ned in (3.7). The �rst term on the right-hand
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side of (3.7) is the usual expression obtained in the limit, when one regresses an I(0)

variable on I(1) regressors. This term has a mixed normal distribution when !zx = 0.

The second term in equation (3.7) comes from the nonlinear part of the DGP. It

depends both on the integral of f over the entire real line and on the local time at

zero of the limiting process of zt: The second component gives the mean of the mixed

normal distribution, when ut and "t are uncorrelated at all lags and leads. Thus, due

to nonlinear nonstationarity, the asymptotic distribution of b�n is noncentral.
Noncentrality of the asymptotic distribution of b�n translates to that of the Fn sta-

tistic. Despite the fact that b�n converges to zero in probability, part (c) of the theorem
implies that a test based on Fn tends to reject the hypothesis of no predictability (in

the current context, the hypothesis of no predictive power is equivalent to � = 0).

For example, consider the case !zx = 0. In this case, Fn has a mixed noncentral �2p
distribution with the noncentrality parameter given by R1

�1 f(x)dx

�u

!2 
�
r�1`(r)

Z r

0

B(s)B0(s)ds

��1=2 Z r

0

B(s)ds


2

:

Consequently, the test that rejects the null of no predictability when Fn > �2p;1��,

where �2p;1�� is the (1� �) quantile of a central �2p distribution, rejects the null with
probability greater than �. Actual rejection probabilities depend on the ratio of the

integral of f to the standard deviation of the noise process ut (the signal-to-noise

ratio in this framework). Interestingly, the shape of the nonlinear function f has no

e¤ect on the rejection rates, since f appears in the expression for the noncentrality

parameter only through its integral over the entire real line. Note, however, that

Fn statistic is not diverging, a result related to that of Hong and Phillips (2005),

Theorem 8. Higher than nominal rejection rates are due to noncentrality of the

asymptotic distribution of Fn.

Lastly, parts (d) and (e) of the theorem shows that Qn has the same limiting

distribution regardless of the value of p: In particular, the baseline model (p = 0)

asymptotically yields the same loss as a model with p > 0. Moreover, the asymptotic

distribution of the loss function does not depend on the information contained in

the predictor. Therefore, the inclusion of powers of the predictor in a forecasting

equation does not improve the forecast accuracy. Part (e) of the theorem describes

the asymptotic distribution of the di¤erence of the loss functions for the polynomial
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and baseline forecasting models. The expression for � is given in the Appendix.

The support of the limiting distribution of the di¤erence includes both positive and

negative parts of the real line. In section 6, we show with the help of Monte Carlo

simulations that this di¤erence tends to be positive in �nite samples and, therefore,

that the baseline model dominates polynomials in the MSE sense.

4 Forecasting with integrable functions

The previous section illustrates that the polynomials can be poor predictors, when

the DGP involves nonstationarity and nonlinearities of a certain type. In fact, a sim-

ple average can dominate a polynomial forecasting model in terms of the MSE. The

reason for this lies in the global nature of the LS approximation in the current frame-

work. Consider minimization of the L2-distance between f(x) and the approximating

function g (x; �):

inf
�2�

Z 1

�1
(f(x)� g (x; �))2 dx; (4.8)

where � � Rp is a compact set. Suppose that g (x; �) is unbounded and diverges

to �1 as x ! �1, which is true for polynomials. In this case, a solution to (4.8)
requires a choice of � such that g (x; �) = 0 almost always. This illustrates why, in

the previous section, the limit of the loss function Qn is proportional to
R1
�1 f

2(x)dx

and does not depend on the information contained in the predictor: The situation

changes if one uses square integrable approximating functions instead of polynomials.

If g (x; �) is square integrable, then a non-trivial solution to (4.8) exists, which leads

to improvements in forecast accuracy. This occurs sinceZ 1

�1
f 2(x)dx � inf

�2�

Z 1

�1
(f(x)� g (x; �))2 dx;

whenever there exists e� 2 � such that g �x;e�� is equal to zero almost everywhere.
In this section, we consider forecasting with square integrable (with respect to x)

functions g (x; �) in the forecasting equation (2.1). The function g has to be nonlinear

in x due to the integrability assumption; however, it may depend on � in a linear or

nonlinear way. We assume that the econometrician restricts � to a compact subset of

Rp; denoted by �: The dimension of � is chosen by the econometrician together with
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the functional form of g: Linear (in �) forecasting functions are of greatest interest:

g (x; �) =

pX
i=1

�i�i(x); (4.9)

where �i�s are integrable for 1 � i � p: An example of a nonlinear function in � is

the class of extended rational polynomials (ERPs):

g (x; �) = �(x)
� 0 + � 1x+ :::+ � px

p

1 + �1x+ :::+ �px
p
; (4.10)

where � is integrable and � =
�
� 0; � 1:::; � p; �1; :::; �p

�
: Functions of this type were

used by Phillips (1983) for density approximation. The approximating functions

considered in this paper are described by the following de�nition and assumption.

De�nition 4.2. A function ' : R��! R is said to belong to the class of I-regular

functions on �; denoted by I (�) ; if
(a) for each �0 2 �; there exists a neghborhood N0 of �0 and T : R! R bounded

and integrable such that jg (x; �)� g (x; �0)j � k� � �0kT (x) for all � 2 N0;
(b) for all � 2 �; g (�; �) 2 I.

The I-regular functions on a set were introduced in Park and Phillips (2001). We

make the following assumption.

Assumption 4.5. (a) � � Rp is compact.
(b) g and g2 2 I (�).

The solution to the problem described in (4.8) depends on the choice of g. In some

cases, such as (4.9) and (4.10), there exists a unique � that solves (4.8). However, in

general, multiple solutions may exist. Let �� be the set of solutions to (4.8):

�� =

�
�� 2 � :

Z 1

�1
(f(x)� g (x; ��))2 dx =M�

�
; where

M� = inf
�2�

Z 1

�1
(f(x)� g (x; �))2 dx:

Note that di¤erent choices of g and p lead to di¤erentM� and ��: Any value �� 2 ��

can be treated as a pseudo-true value of � for a given choice of g:
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Similarly to Section 3, we assume that � and � are estimated by LS from the

training sample (nonlinear LS, if g is nonlinear in �). In the second step, the estimates

of � and � are used to compute predicted values of y in the forecasting sample. Let

�n be the set of values of � 2 � that solve the in-sample LS problem:

min
�2�;�

[nr]X
t=1

(yt � �� g (zt�1; �))2 :

For each b�n 2 �n; the corresponding estimator of � is given by
b�n �b�n� = [nr]�1 [nr]X

t=1

�
yt � g

�
zt�1;b�n�� : (4.11)

We de�ne the distance between � and the set A � Rp as

d (�; A) = inf
a2A

ka� �k :

The following result describes the behavior of the LS estimators of � and � and error

function Qn as the sample size approaches in�nity.

Theorem 4.2. Under Assumptions 2.1-2.3 and 4.5,
(a) supb�n2�n d

�b�n;���!p 0:

(b) supb�n2�n
���b�n �b�n�� �����!p 0:

(c) supb�n2�n n1=2Qn
�b�n �b�n� ;b�n�!d (1� r)�1 (`(1)� `(r))M�:

Theorem 4.2(a) implies that b�n converges in probability to the set of its pseudo-
true values. It follows from part (b) of the Theorem that b�n �b�n� is a consistent esti-
mator of ��. Part (c) of the Theorem shows that, in the case of square integrable ap-

proximating functions, asymptoticallyQn is proportional to the least distance between

the true nonlinear function and its approximant: M� = inf�2�
R1
�1 (f(x)� g (x; �))

2 dx.

Thus, asymptotically one achieves the smallest out-of-sample MSE for a given class

of functions g: Finally, comparison of the results of Theorem 3.1(d) and 4.2(c) im-

plies that integrable functions yield an improvement in the forecasting accuracy over

polynomials and the baseline model.

For certain choices of g; the solution to (4.8) is unique, i.e. �� = f��g : In this
case, using the results of Jeganathan (2003), one can show that b�n converges in
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probability to �� at the rate of n1=4; which is slower than usual. While its asymptotic

distribution is mixed normal, the covariance matrix depends on functionals of the

unknown function f: Further, b�n has the usual n1=2 rate of convergence to ��: Its
limiting distribution is mixed normal and centered around

`(r)

Z 1

�1
(f (x)� g (x; ��)) dx: (4.12)

The results of Theorem 4.2 remain valid if one replaces b�n with the average of yt in
the training sample, b�0;n: It may have an advantage over b�n; since the asymptotic
distribution of the historic average is centered around

`(r)

Z 1

�1
f (x) dx: (4.13)

While we have that
R1
�1 (f (x)� g (x; �

�)) @g (x; ��) =@�dx = 0; nevertheless, using a

simple average to estimate �� may result in smaller bias (4.13) than that of the LS

estimator (4.12).

5 Testing predictability

This section presents testing procedures that rejects the null of no predictability only

if the corresponding model possesses out-of-sample predictive power superior to that

of the baseline model. It is convenient to consider the class of linear approximants

de�ned by equation (4.9). In this case, �� is singleton, and the hypothesis of interest

is whether �� = 0: The linear in parameters forecasting model is computationally

simple. However, its advantages are not limited to computational convenience. For

nonlinear in parameters approximants, some parameters may be unidenti�ed under

the null. For example, in the case of ERPs described in equation (4.10), under the

null of no predictability � �0 = � �1 = ::: = � �p = 0: However, the coe¢ cients in the

denominator � =
�
�1; :::; �p

�0
are not identi�ed under the null. Any value of � in

some compact set would give asymptotically the same result.
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5.1 In-sample test

In view of the results presented in the previous sections, we propose a modi�cation

of predictive regressions based on integrable transformations of the predictor. We

consider a local to zero alternative DGP:

Assumption 5.6. yt = �+ n�1=4f (zt�1) + ut:

Scaling by n�1=4 instead of usual n�1=2 in the alternative DGP follows from the

convergence rates in Lemma 2.1(d) and (e). We make the following assumption

regarding the basis functions �i in (4.9):

Assumption 5.7. �i and �
2
i 2 I for all 1 � i � p:

Let � (zt) =
�
�1(zt); :::; �p(zt)

�0
: The LS estimator of � is given by

b�n =  nX
t=1

�
� (zt�1)� �n

� �
� (zt�1)� �n

�0!�1 nX
t=1

�
� (zt�1)� �n

�
yt;

where �n = n�1
Pn

t=1�t�1: The Wald test statistic for H0 : �
� = 0 is de�ned as

Tn = b�0n
 

nX
t=1

�
� (zt�1)� �n

� �
� (zt�1)� �n

�0!b�n=b�2u;n; (5.14)

where b�2u;n = n�1Pn
t=1

�
yt � b�n � � (zt�1)0 b�n�2 : In the case of non-local alternatives,

the results in Section 4 imply that Tn diverges to plus in�nity at the rate of n1=2:

Suppose one rejects the null hypothesis if Tn > �2p;1��; where �
2
p;1�� is the (1� �)

quantile of the �2p distribution. The following theorem describes the asymptotic size

of the test and its power against local alternatives.

Theorem 5.3. Under Assumptions 2.1-2.3, 5.6 and 5.7, Tn has an asymptotically
noncentral mixed �2p distribution with the noncentrality parameter given by 1�u

�
`(1)

Z 1

�1
�(x)�(x)0dx

��1=2 Z 1

�1
f(x)�(x)dx


2

:

The theorem implies that the test based on Tn detects alternatives approaching
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the null at the rate slower than n�1=4. Next, note that

�� =

�Z 1

�1
�(x)�(x)0dx

��1 Z 1

�1
f(x)�(x)dx:

The null hypothesis, H0 : �
� = 0; is true if f and � are orthogonal, including the case

of unrelated yt and zt�1 (f(x) = 0 almost everywhere). In this case, asymptotically

the test statistic Tn has a central �2p distribution regardless of the value of the long-run

covariance !zu: Furthermore, Theorems 4.2 and 5.3 together imply that, contrary to

the test based on Fn; the test based on Tn does not tend to reject the null hypothesis

of no predictive power, unless the forecasting model has a better out-of-sample �t

than the baseline forecasting equation.

5.2 Out-of-sample tests

In this section, we consider the predictability tests based on out-of-sample statistics.

Such a test has an advantage of explicitly testing the out-of-sample performance of

a forecasting model. However, this approach requires splitting of the sample into

training and forecasting subsamples. As a result, smaller number of observations is

used in actual testing, which may lead to power loss comparing to the test discussed

in the previous section (for a discussion of in-sample and out-of-sample predictability

tests see Inoue and Kilian (2004)). We assume that the relative size of the training

sample is r 2 (0; 1) and �xed by the econometrician. Again, we consider linear in
parameters forecasting equation (4.9).

Let Qn
�b�n;b�n� and Qn �b�0;n; 0� be the loss functions corresponding to equation

(4.9) and the baseline model respectively. The test statistic is de�ned as follows.

Sn = (1� r)n
�
Qn
�b�0;n; 0��Qn �b�n;b�n�� =b�2u;[nr]:

If zt�1 has predictive power over yt; as de�ned by Assumptions 2.1(a) and 2.3, then it

follows from Theorems 3.1(d) and 4.2(c) that asymptotically Sn=n1=2 is proportional

to
R1
�1 f

2(x)dx �
R1
�1 (f(x)� g (x; �

�))2 dx � 0: This di¤erence is strictly positive,

unless the base functions �i in (4.9) are orthogonal to f . Consequently, in such a

situation, Sn diverges to in�nity at the rate of n1=2. Thus, the signi�cance level � test

based on Sn is to reject the null hypothesis of no predictability, for the forecasting
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model given by �, when

Sn > c�;

where c� is a positive constant chosen so that the test has signi�cance level �. The

following theorem provides the asymptotic distribution of Sn under the 1=n1=4 local

alternatives de�ned by Assumption 5.6.

Theorem 5.4. Under Assumptions 2.1-2.3, 5.6 and 5.7, as n ! 1; Sn converges
in distribution tod(r)`(r)�u

�Z 1

�1
�(x)�(x)0dx

��1=2 Z 1

�1
f(x)�(x)dx+W2


2

�kd(r)W1 �W2k2 ;

where d(r) = ((`(1)� `(r)) =`(r))1=2, and W1; W2 are N (0; Ip) random vectors inde-

pendent from ` and each other.

Under the null, �� and, consequently,
R1
�1 f(x)�(x)dx are equal to zero, and the

asymptotic distribution of Sn is described by the distribution of

kW2k2 � kd(r)W1 �W2k2 :

Power of the test depends on the magnitude ofd(r)`(r)�u

�Z 1

�1
�(x)�(x)0dx

��1=2 Z 1

�1
f(x)�(x)dx


2

:

For example, the test has poor power properties if the vector of base functions �(x)

is close to being orthogonal to the true function f: Power of the test also decreases

with the variance of the unpredictable component ut:

In the de�nition of d(r), ` stands for the local time of the limit process of zt=n1=2:

Hence, the critical values cannot be tabulated and must be calculated on a case by case

basis, given fztg : First, one has to obtain an estimate of d(r). A natural estimator isbdhn(r) = �Pn
t=[nr]+1 h (zt) =

P[nr]
t=1 h (zt)

�1=2
, where h 2 I, for example, the standard

normal density function. Next, one simulates two independent N (0; Ip) random vec-

tors, say Wk;1 and Wk;2; and calculates Shn;k =
bdhn(r)Wk;1 �Wk;2

2 � kWk;2k2 : For
large n; the distribution of Shn;k approximates the asymptotic distribution of Sn un-
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der the null. Therefore, one can repeat this for k = 1; : : : ; K; and estimate c� by the

1�� sample quantile of fShn;k : k = 1; : : : ; Kg : As we mention in the discussion after
Lemma 2.1, if one assumes that z0 = n1=2c; then, in the asymptotic distribution of

Sn; the local time at zero process will be replaced with local time at �c: However, in
practice, estimation of c is not required, since for any value of c the statistic

P
t h (zt)

converges to its corresponding local time process.

6 Monte Carlo results

The theoretical results of the previous sections suggest that nonlinear processes de-

scribed by Assumptions 2.1-2.3 may be confused with an MDS. In this case, usual

linear regression methods lead to spurious forecasts, while integrable approximants

provide better out-of-sample �t. This section presents a series of Monte Carlo ex-

periments motivated by these �ndings. First, we would like to illustrate similarities

between an MDS and a process generated according to the model in Assumptions

2.1-2.3. In this and the next section, we use � to denote the standard normal density

function.

Figure 1 shows a typical sample path of a process generated according to Assump-

tions 2.1-2.3 with f(x) = 10�(x); the independent standard normal errors futg ; and
random walk fztg with the standard normal increments independent of futg : The
random walk was initialized at zero. The top graph plots the errors futg ; the graph
in the middle shows the sample path of the nonlinear component ff (zt)g ; and the
graph at the bottom shows the sum of the two components. The �gure shows that

the signal generated by the nonlinear part is strong relative to the noise only during

the �rst 15 periods. After that, the sum of the nonlinear component and the noise

cannot be distinguished from an MDS.

The results in Section 3 suggest that a test based on the usual linear regression

methods (Fn) is likely to indicate predictive power, if Assumptions 2.1-2.3 provide a

good approximation of the true DGP. It is important to see rejection rates in �nite

samples. We simulate the data according to the following equations:

yt = af (zt�1) + ut;

(ut;�zt)
0 s iid N (0; I2) ;

z0 = 0;
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where the constant a allows one to vary the signal-to-noise ratio. We consider the

following choices of f :

f1(x) = 1f0 < x < 1g;
f2(x) = (1� 0:5x)1f0 < x < 2g;
f3(x) = x21

�
0 < x < 31=3

	
;

f4(x) = 2�(x+ 0:25)� �(x� 0:75):

The four functions have di¤erent graphs, however, they all have the same Lebesgue

measure 1: Thus, according to the results in Section 3, all four functions should provide

similar rejection rates. This is due to the fact that the asymptotic distribution of Fn
depends on the integral of f and not on the shape of the function.

We construct Fn using the LS estimates of (�1; :::; �p) in the forecasting model

below: byt (�; �) = �+ pX
i=1

�iz
i
t�1:

Table 1 reports the simulated rejection rates for the sample size of 100 observations.

The number of simulations is 1,000, the nominal size is 5%, a 2 f1; 2; 4; 8g; and
p 2 f1; 2; 3; 4g : Table 1 shows that the actual rejection rates are higher than the
nominal 5%. For example, in the case of a usual predictive regression (p = 1), the

rejection rates are around 20% for a = 2, and they exceed 50% for most of the models

when a = 8: Thus, the econometrician is likely to conclude that the polynomial

forecasting function has predictive power. Simulations also con�rm that the shape

of f does not have an e¤ect on the rejection rates, since rejection rates appear to be

similar for all four DGP�s.

Next, we compare the out-of-sample performance of various forecasting models.

We consider constant, polynomial, integrable linear (in parameters) and ERP fore-

casting equations:

byt (�; 0) = �; (6.15)

byt (�; �) = �+

pX
i=1

�iz
i
t�1; (6.16)

byt (�; �) = �+ � (zt�1)

pX
i=1

�i jzt�1ji�1 ; (6.17)
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byt (�; �) = �+ � (zt�1)
�1 + �2zt�1 + :::+ �p+1z

p
t�1

1 + �p+2zt�1 + :::+ �2p+1z
p
t�1
: (6.18)

We use the absolute value in the de�nition of (6.17), so that all base functions have a

non-zero Lebesgue measure. First, we simulate 200 observations and use observations

f1; :::; 100g to estimate the parameters in (6.15)-(6.18) (in this case, r = 1=2). The
parameters are estimated by LS (nonlinear LS, in the case of equation (6.18)). In the

second step, we construct one period ahead forecasts for observationsf101; :::; 200g
using the estimated versions of (6.15)-(6.18). Finally, using predicted values of yt; we

compute the out-of-sample MSE�s for the four forecasting equations.

Table 2 reports the proportion of cases in which forecasting functions (6.16)-(6.18)

have smaller MSE�s than that of the historic average (model (6.15)). The number

of simulations is 1,000, a 2 f1; 10g ; and p 2 f1; 2; 3; 4g : Consider the case of f1
and p = 1: The numbers corresponding to the polynomial forecasting model show

that the historic average provides better out-of-sample �t than predictive regression

in approximately 66%-69% of the repetitions. Increasing the value of a from 1 to

10 leads only to a marginal improvement in the performance of the polynomials.

Thus, by ignoring the information contained in the predictor, with high probability

one can obtain better forecasts, despite the fact that Fn indicates predictive power.

Performance of the integrable forecasting functions depends on the strength of the

signal coming from the nonlinear component. In the case of a = 1, the historic average

provides better out-of-sample �t in 42%-50% of the repetitions. However, in the case

of a = 10; the integrable forecasting models perform better than the baseline model

in 78%-85% of the repetitions. Similar patterns are observed for the DGPs f2, f3
and f4: Hence, the result of Theorem 4.2(c) holds in �nite samples, provided that

the signal-to-noise ratio is su¢ ciently large. Table 2 shows that the performance of

(6.16)-(6.18) may deteriorate as p increases. This can be explained by the slow rates

of convergence in the case of integrable transformations of I(1) processes. Evidently,

when p > 1; larger sample sizes are required in order to obtain better approximations.

Finally, we evaluate �nite sample size and power properties of the in-sample (Tn)

and out-of-sample (Sn) tests proposed in Section 5. We use values of a 2 f0; 0:5; 1; 2g;
and the nominal size of 5%. For the out-of-sample test, We consider values of r 2
f1=4; 1=2; 3=4g : Critical values were calculated from 1,000 simulation repetitions. The
test statistics are constructed using the estimates of � in (6.17) for p = 1. We set

the number of observations equal to 500, and the number of simulations to 1,000.
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Table 3 reports the results. First, consider a = 0; which corresponds to the case of no

predictive power. As one can see from the table, the actual rejection rates are close to

the nominal, especially when p = 1:We conclude that, under the null, the asymptotic

distributions provide reasonable approximations to the actual distribution of Sn and

Tn in �nite samples. Next, the results for a > 0 show that the tests have power

for all choices of f: The in-sample test appears to be somewhat more powerful than

the out-of-sample test in the cases of f1; f2 and f4; and considerable more powerful

in the case of f3 (these results coincide with the conclusion reached by Inoue and

Kilian (2004)). For f3 and a = 2; in-sample test attains 75% rejection rate, while the

rejection rates for the out-of-sample test are in the range 37%-48%. In the case of f3;

observed rejection rates in general are lower than for the other three DGPs.

7 Empirical example

The dividend-price ratio (dividend yield) has received much attention in the litera-

ture as a potential predictor for stock returns. In a recent study, Lewellen (2004)

considered the regression of stock returns on the natural log of the dividend yield

and reported strong predictive power. Goyal and Welch (2003) approached the same

problem from a di¤erent perspective. They focused on out-of-sample �t and arrived

at an opposite conclusion. This section evaluates the predictive power of the nat-

ural log of the dividend-price ratio (LDP) in view of the theoretical �ndings of the

previous sections. We consider the same data as Goyal and Welch (2003): monthly

observations, for the period 1946-2000, of value-weighted NYSE stock returns.

Table 4 shows the results of unit root tests for the LDP. We consider two alterna-

tive autoregressive speci�cations for the LDP: with and without linear deterministic

trend. The �rst line of the table shows that the estimated autoregressive coe¢ cient is

very close to unity in both cases. Furthermore, the Phillips-Perron Zt test is unable

to reject the null hypothesis of I(1) for either speci�cation. Finally, the strongest

evidence in support of the I(1) hypothesis for the LDP comes from KPSS tests (see

Kwiatkowski et al. (1992)). The KPSS test assumes stationarity under the null hy-

pothesis. Rejection of the null suggests that there is strong evidence in favor of the

nonstationary alternative. As one can see from Table 4, this is the case with the

LDP. At 1% signi�cance level, the null hypothesis is rejected for both models, with

or without the deterministic trend component. We conclude that a unit root model
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is a reasonable approximation for the LDP.

Next, we look at in-sample predictability. We compare three testing procedures.

The �rst procedure is based on the usual predictive (OLS) regression of stock returns

on the �rst lag of the LDP. The second test is based on the Fully Modi�ed OLS (FM-

OLS) estimator of the regression slope, which is corrected for endogeneity of errors.

While the OLS based t-test is invalid if the errors and predictor are correlated, the

FM-OLS t-statistic has a mixed normal distribution regardless of correlations between

errors and the regressor (see Phillips and Hansen (1990)). It is important to emphsize

that the linear model is not regarded as a true DGP, but rather as a misspeci�ed

forecasting equation. According to the results of Section 3, one should expect to

see a small estimated slope coe¢ cient and a large t-statistic if the true DGP is well

approximated by the one described in Assumptions 2.1-2.3. Finally, we consider the

in-sample testing approach proposed in Section 5.1. For that purpose, we use standard

normal density transformation of the LDP (p = 1): In this case, one should reject

the null of no predictive power if jTnj1=2 > z1��; where z� is the �-quantile of the

standard normal distribution. Table 5 reports the results of the tests. First, the OLS

and FM-OLS estimates are of small magnitude. Further, the OLS based t-statistic

is large; however, it is not signi�cant at 5% signi�cance level. The statistic based

on FM-OLS estimates and jTnj1=2 statistic are both signi�cant. Hence, in-sample
evidence indicates possible predictive power of the LDP.

The large values of t-statistics should not be taken as an evidence in favor of a

linear relationship between stock returns and the lagged value of the LDP. As we

argue in Section 3, in this framework, it rather points in the direction of a possible

nonlinear dependence.

Lastly, we compare the out-of-sample performance of the four predictive models

given in equations (6.15)-(6.18). We set p = 1 in (6.16)-(6.18). Equation (6.15)

corresponds to the assumption that the stock returns cannot be predicted from the

historic values of the LDP and produces constant forecasts. Equation (6.16) is the

usual predictive regression model. Equation (6.17) corresponds to the integrable

forecasting function linear in the parameters. Finally, equation (6.18) describes the

ERP forecasting model: For the purpose of this exercise, we select r 2 (0; 1) and divide
the sample into two parts: observations f1; :::; [nr]g and observations f[nr] + 1; :::; ng :
In the �rst step, we use observations f1; :::; [nr]g to estimate the unknown parameters
in (6.15)-(6.18). In the case of (6.15), the average of yt in the training sample is used
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to estimate �. The historic average has been used to estimate � in (6.17) and (6.18)

as well. As it was mentioned above, replacing the LS estimator of the intercept by

the simple average of yt�s in the training sample has no e¤ect on the behavior of the

loss function asymptotically. However, it appears to perform better in practice. In

the case of ERP, parameters are estimated by nonlinear LS. we used zeros as starting

values for b�1; b�2 and b�3 for numerical optimization. This choice follows from the fact

that �1 = �2 = 0 in (6.18) implies that the LDP has no predictive power. In the

second step, estimated versions of (6.15)-(6.18) and the actual values of LDP in the

forecasting sample are used to construct one period ahead forecasts for observations

f[nr] + 1; :::; ng.
Table 6 reports the out-of-sample square-root MSE�s, test statistic Sn de�ned in

Section 5.2 and its p-value. The out-of-sample Sn statistic was calculated using the

standard normal density transformation of the predictor. Its p-value was calculated

using 10,000 simulations. we consider r 2 f1=4; 1=2; 3=4g : It appears that the linear
regression is the worst performer, since it is dominated by the historic average and

integrable functions for all considered choices of r. The MSE�s of the integrable func-

tions is smaller than that of the historic average at all forecasting horizons. However,

Sn statistic has large p-values of 34%-45%, implying that the di¤erence between the

forecasting accuracy of the historic average and integrable function (linear in para-

meters) is not statistically signi�cant. Nevertheless, we �nd it interesting that, in the

above results, applying an integrable transformation produces automatic improve-

ment in the out-of-sample performance against linear regression and historic average.

It is possible that, at the considered sample size, the out-of-sample statistic does not

have enough power to reject the null of no predictability.

It is important to emphasize that the above exercise is not an attempt to obtain

a best nonlinear predictor. For that purpose, the search process among integrable

functions must be taken into account in the testing procedure to avoid data snooping

bias. This problem can be approached along the lines described by White (2000).

Development of such and ERP based tests is a part of the ongoing research project.

We o¤er the following interpretation of the results reported in Table 6. It is rea-

sonable to assume that the LDP contains an autoregressive unit root. Consequently,

the LDP cannot be a good predictor for stock returns during the periods which ex-

hibit apparent trending behavior. Integrable transformations of the LDP improve

out-of-sample �t because they �lter out large values of the LDP. This allows one to
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ignore the LDP during the trending periods and extract useful information during

the other times. This interpretation is consistent with the idea that stock returns are

predictable only on rare occasions, when the predictor does not show clear patterns

immediately observable by all market participants.

8 Concluding remarks

In this paper, we consider forecasting of time series which contain a nonstationary,

nonlinear component. The nonlinear component is modeled as an integrable trans-

formation of the predictor, which is assumed to be an I(1) variable. It is assumed

that the true form of the nonlinear component is unknown to the econometrician, and

that he is forced to use some approximating functions. We show that standard tools

such as t-type tests and linear regressions lead to spurious forecasts. The diagnostic

tests tend to indicate predictive ability, while the forecasts based on the usual linear

regression perform worse in terms of the MSE than constant forecasts, which ignore

the information contained in the predictor. This paper provides general approximat-

ing results, which allow one to improve the forecast accuracy with properly chosen

nonlinear forecasting functions. It is shown that one can obtain non-trivial improve-

ments in forecast accuracy over polynomials and historic averages by using square

integrable forecasting functions. Only the case of a single predictor is considered in

this paper. The analogous results can be obtained in the case of multiple covariates

with additively separate regression functions.

The empirical application considered in this paper is concerned with forecasting

the NYSE stock returns using the dividend-price ratio. We show that integrable

transformations of the dividend-price ratio provide somewhat better out-of-sample �t

than the forecasts constructed from the typical linear models. The accuracy of the

forecasts is improved because nonlinear transformations �lter out irrelevant informa-

tion.

We would like to emphasize the importance of nonstationarity in the current

context. In Section 4, we show that, in the case of a nonstationary predictor zt;

the loss function converges to the L2-distance between the true function f and the

approximating function g (multiplied by the local time process):Z 1

�1
(f(x)� g (x; �))2 dx:
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In contrast, in the case of a strictly stationary and ergodic predictor zt; the loss

function converges to the L2-distance weighted by the density of the predictor:Z 1

�1
(f(x)� g (x; �))2 pdfz(x)dx;

where pdfz denotes the probability density function of the predictor. In the second

case, polynomials can provide a good approximation since pdfz(x)! 0 as x! �1;
while in the nonstationary case, approximation with polynomials is impossible due

to unweighted integration over the entire real line.

One of the attractive features of the tests proposed in Section 5 is that their

implementation does not require pre-tests to verify that the predictor is indeed an

I(1) process, and therefore no pre-test bias will be introduced. One can easily verify

that these tests have correct size even when zt is stationary.

The results in this paper are limited to the forecasting problem. However, they

can be extended to nonparametric estimation of the nonlinear component.

Appendix

Proof of Theorem 3.1. We prove part (a) �rst. Write b�n = A1n�A2n+A3n; where
A1n =

0@ [nr]X
t=1

Zt�1Z
0
t�1

1A�1
[nr]X
t=1

f (zt�1)Zt�1;

A2n =

0@ [nr]X
t=1

f (zt�1)

1A0@ [nr]X
t=1

Zt�1Z
0
t�1

1A�1

[nr]�1
[nr]X
t=1

Zt�1;

A3n =

0@ [nr]X
t=1

Zt�1Z
0
t�1

1A�1
[nr]X
t=1

utZt�1:

It follows from Lemma 2.1(b) and the Cramér-Wold device (see Theorem 25.5 of

Davidson (1994) on page 405) that

n�1
[nr]X
t=1

D�1=2
n Zt�1Z

0
t�1D

�1=2
n !d

Z r

0

B(s)B(s)0ds: (8.19)
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Assumption 3.4 and Lemma 2.1(d) imply that

n�1=2
[nr]X
t=1

f (zt�1)Zt�1 = Op(1): (8.20)

Therefore, it follows from (8.19) and (8.20) that

n1=2D1=2
n A1n = op(1): (8.21)

Next, joint convergence in Lemma 2.1(b),(d) and the CMT imply that

n1=2D1=2
n A2n !d r

�1`(r)

Z 1

�1
f(x)dx

�Z r

0

B(s)B(s)0ds

��1 Z r

0

B(s)ds: (8.22)

Finally, Lemma 2.1(c) implies that

n1=2D1=2
n A3n !d

�Z r

0

B(s)B(s)0ds

��1 Z r

0

B(s)du(s): (8.23)

The result in part (a) follows from (8.21)-(8.23) and the joint convergence in Lemma

2.1.

The result in part (b) of the theorem follows immediately from the de�nition ofb�n; Lemma 2.1 and part (a) of the theorem.
For part (c) of the theorem, it is su¢ cient to show that b�2u;n in (3.5) converges

in probability to �2u: The result will follow from part (a) and the CMT. De�ne the

averages fn = [nr]
�1P[nr]

t=1 f (zt�1) ; and un = [nr]
�1P[nr]

t=1 ut: Write

[nr]X
t=1

�
yt � b�n � Z 0t�1b�n�2 = [nr]X

t=1

��
f (zt�1)� fn

�
+ (ut � un)� Z 0t�1b�n�2 : (8.24)

We have the following results:

[nr]X
t=1

�
f (zt�1)� fn

�2
=

[nr]X
t=1

f 2 (zt�1)�

0@[nr]�1=2 [nr]X
i=1

f (zt�1)

1A2

= Op
�
n1=2

�
; (8.25)
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b�0n [nr]X
t=1

Zt�1Z
0
t�1
b�n = Op(1); (8.26)

[nr]X
t=1

�
f (zt�1)� fn

�
(ut � un) = Op

�
n1=4

�
; (8.27)

[nr]X
t=1

�
f (zt�1)� fn

�
Z 0t�1

b�n = op (1) ; (8.28)

[nr]X
t=1

(ut � un)Z 0t�1b�n = Op (1) : (8.29)

Equation (8.25) follows from Assumption 2.3 and Lemma 2.1(d); (8.26) is implied

by part (a) of the theorem and Lemma 2.1(b); (8.27) is due to Lemma 2.1(e); (8.28)

follows from part (a) of the theorem, Lemma 2.1(d) and Assumption 3.4; and, lastly,

(8.29) follows from 2.1(c) and part (a) of the theorem. Next, (8.24)-(8.29) together

imply that

[nr]X
t=1

�
yt � b�n � Z 0t�1b�n�2 = [nr]X

t=1

u2t +

[nr]X
t=1

�
f (zt�1)� fn

�2
+Op

�
n1=4

�
:

The result follows from Assumption 2.2(a) and (b) and the MDS LLN (see for, ex-

ample, Theorem 20.11 on page 315 of Davidson (1994)).

The proof of part (d) is similar to the derivation of the probability limit of s2n in

(b). Using the same arguments as in (8.24)-(8.29), one can write nQn
�b�n;b�n� as

follows:

nX
t=[nr]+1

�
f (zt�1)� fn

�2
+Op

�
n1=4

�

=

nX
t=[nr]+1

f 2 (zt�1) +
n� [nr]
[nr]2

0@ [nr]X
t=1

f (zt�1)

1A2

� 1

[nr]

[nr]X
t=1

f (zt�1)

nX
t=[nr]+1

f (zt�1) +Op
�
n1=4

�
=

nX
t=[nr]+1

f 2 (zt�1) +Op
�
n1=4

�
: (8.30)
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The result follows from (8.30), Assumption 2.3 and Lemma 2.1(d).

We prove part (e) of the theorem now. Write

(n� [nr])
�
Qn

�b�n;b�n��Qn �b�0;n; 0��
=

nX
t=[nr]+1

�
yt � b�0;n � Z 0t�1b�n�2 � nX

t=[nr]+1

�
yt � b�0;n�2

= B1n � 2B2n � 2B3n;

where

B1n = b�0n nX
t=[nr]+1

Zt�1Z
0
t�1
b�n;

B2n =
nX

t=[nr]+1

�
f (zt�1)� fn

�
Z 0t�1

b�n;
B3n =

nX
t=[nr]+1

(ut � un)Z 0t�1b�n:
Due to the result in part (a),

B1n ! d	
0
�Z 1

r

B(s)B(s)0ds

�
	; (8.31)

B2n = � [nr]�1
[nr]X
t=1

f (zt�1)
nX

t=[nr]+1

Z 0t�1
b�n

�
nX

t=[nr]+1

f (zt�1) [nr]
�1

[nr]X
t=1

Z 0t�1
b�n + nX

t=[nr]+1

f (zt�1)Z
0
t�1
b�n;

where the last term is op(1): We have

B2n ! d � r�1
�Z 1

�1
f(x)dx

�
�
�
`(r)

Z 1

r

B(s)d(s) +

Z r

1

d`(s)

Z r

0

B(s)ds

�0
	; (8.32)

B3n ! d

�Z 1

r

B(s)du(s)� r�1u(r)
Z 1

r

B(s)ds

�0
	: (8.33)
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It follows then from (8.31)-(8.33) that the limiting random variable (1� r)� is given
by

	0
�Z 1

r

B(s)B(s)0ds

�
	

+2r�1
�Z 1

�1
f(x)dx

�
	0
�
`(r)

Z 1

r

B(s)d(s) +

Z 1

r

d`(s)

Z r

0

B(s)ds

�
�2	0

�Z 1

r

B(s)du(s)� r�1u(r)
Z 1

r

B(s)d(s)

�
:

The support of � includes both negative and positive parts of the real line since the

following matrix is inde�nite: R 1
r
B(s)B(s)0ds Ip

Ip 0

!
;

and � is a quadratic form involving the above matrix. �

The following lemma is used in the proof of Theorem 4.2. It considers the case
of extremum estimators with multiple optimal points. Let �)� denote the weak
convergence of stochastic processes.

Lemma 8.2. Suppose that

(Q1n (�) ; Q2n (�)) =) (Q1 (�) ; Q2 (�)) ;

where (Q1 (�) ; Q2 (�)) is a stochastic processes indexed by � 2 �; and � is a compact
subset of Rp. De�ne

�� =

�
�� 2 � : P

�
Q1 (�

�) = inf
�2�

Q1(�)

�
= 1

�
:

Let �n be the set of values of � that minimize Q1n (�) on �: Then,

(a) sup�n2�n d (�n;�
�)!p 0 as n!1:

(b) Suppose that Q2n(�) is stochastically equicontinuous on �; and that the fol-
lowing condition is satis�ed for all " > 0

P

 
sup

��1;�
�
22��

jQ2 (��1)�Q2 (��2)j � "
!
= 0: (8.34)
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Then, as n!1
sup
�n2�n

sup
��2��

jQ2n (�n)�Q2n (��)j !p 0:

Proof of Lemma 8.2. (a) As n!1;

limP

�
sup
�n2�n

d (�n;�
�) � �

�
� limP

�
inf

�2�:d(�;��)��
Q1n (�) � inf

��2��
Q1n (�

�)

�
:

De�ne

h (Q) = 1

�
inf

�2�:d(�;��)��
Q (�) � inf

��2��
Q (��)

�
:

The de�nition of �� implies that h (Q1) = 0 with probability one: Next, for all " > 0;

limP

�
inf

�2�:d(�;��)��
Q1n (�) � inf

��2��
Q1n (�

�)

�
= limP (h (Q1n) � ")

� P (h (Q1) � ")
= 0: (8.35)

The inequality in (8.35) follows from weak convergence and the continuous mapping

theorem (CMT) (see Theorem 22.11 of Davidson (1994) on page 355).

(b) As n!1;

limP

�
sup
�n2�n

sup
��2��

jQ2n (�n)�Q2n (��)j � "
�

� limP

�
sup
�n2�n

sup
��2��

jQ2n (�n)�Q2n (��)j � "; sup
�n2�n

d (�n;�
�) < �

�
+limP

�
sup
�n2�n

d (�n;�
�) � �

�
: (8.36)

Next, the condition sup�n2�n d (�n;�
�) < � implies that for all �n 2 �n there exists

��n 2 �� such that k��n � �nk < �: The �rst summand on the right-hand side of (8.36)
is bounded by

limP

�
sup
�n2�n

jQ2n (�n)�Q2n (��n)j+ sup
��2��

jQ2n (��n)�Q2n (��)j � "
�

� limP

 
sup
��2��

sup
k����k<�

jQ2n (�)�Q2n (��)j
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+ sup
��1;�

�
22��

jQ2n (��1)�Q2n (��2)j � "
!
:

Now, weak convergence, the CMT and (8.34) imply that

sup
��1;�

�
22��

jQ2n (��1)�Q2n (��2)j !p 0:

The second summand on the right-hand side of (8.36) is o(1) due to part (a) of the

lemma. The desired result follows from the stochastic equicontinuity of Q2n and

Slutsky�s theorem (see Theorem 18.10(ii) of Davidson (1994) on page 286). �

Proof of Theorem 4.2. Concentrating out � as in (4.11), write the in-sample MSE
as

n1=2MSEn(�) = n�1=2
[nr]X
t=1

�
yt � b�0;n � g (zt�1; �) + gn(�)�2

= n�1=2
[nr]X
t=1

(f (zt�1)� g (zt�1; �))2 + n�1=2
[nr]X
t=1

(ut � un)2

+Rn(�);

where Rn(�) = R1n(�) + 2R2n(�) + 2R3n(�) + 2R4n(�), and

R1n(�) = n1=2
�
fn � gn(�)

�2
;

R2n(�) =
�
fn � gn(�)

�
n�1=2

[nr]X
t=1

(f (zt�1)� g (zt�1; �)) ;

R3n(�) = n�1=2
[nr]X
t=1

(f (zt�1)� g (zt�1; �)) (ut � un) ;

R4n(�) =
�
fn � gn(�)

�
n�1=2

[nr]X
t=1

(ut � un) :

Next, we show that each of the components of Rn(�) is op(1) uniformly in �: For

R1n(�); write R1n(�) = n�1=2
�
n�1=2

P[nr]
t=1 (f (zt�1)� g (zt�1; �))

�2
: Then, Assump-

tions 2.3 and 4.5, uniform convergence in Theorem 3.2 of Park and Phillips (2001)

and the CMT imply that sup�2� jR1n(�)j = op(1): In a similar way, one can show
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that R2n(�) and R4n(�) converge to zero in probability uniformly in �. Finally,

sup�2�R3n(�) = op(1) as it follows from Lemma A7(b) of Park and Phillips (2001). It

follows now from Assumptions 2.3, 4.5 and Theorem 3.2 of Park and Phillips (2001)

that

n1=2MSEn(�)� n�1=2
[nr]X
t=1

(ut � un)2 =) `(r)

Z 1

�1
(f(x)� g (x; �))2 dx: (8.37)

The result in (8.37) and Lemma 8.2(a) together imply that

sup
�2�n

d (�n;�
�)!p 0; (8.38)

which completes the proof of part (a) of the Theorem.

For part (b), write

sup
�n2�n

���b�n �b�n�� ����� �

������[nr]�1
[nr]X
t=1

(f (zt�1)� g (zt�1; ��))

������+
������[nr]�1

[nr]X
t=1

ut

������
+sup
�2�

jR5n (��; �)j ; (8.39)

where �� 2 ��; and

R5n (�
�; �) = [nr]�1

[nr]X
t=1

(g (zt�1; �
�)� g (zt�1; �)) :

The �rst two summands on the right-hand side of (8.39) are op(1); as it follows from

Lemma 2.1(a) and (d); sup�2� jR5n (��; �)j = op (1) due to the assumptions of the

theorem, Theorem 3.2 of Park and Phillips (2001) and the CMT. The result of part

(b) of the theorem follows.

For part (c) of the theorem, note that Qn
�b�n �b�n� ;b�n� depends on the out-of-

sample MSE: Hence, similarly to part (a), one can show that

n1=2Qn (b�n (�) ; �)) (1� r)�1 (`(1)� `(r))
Z 1

�1
(f(x)� g (x; �))2 dx:

Next, �x �� 2 ��: De�ne R6;n (�n; ��) = Qn (b�n (�n) ; �n)�Qn (b�n (��) ; ��) : It follows
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from Lemma 8.2(b) that

sup
�n2�n;��2��

���n1=2R6;n �b�n; ������!p 0:

Hence,

n1=2Qn

�b�n �b�n� ;b�n� = n1=2Qn (b�n (��) ; ��) + op(1)
! d(1� r)�1 (`(1)� `(r))M�;

where the last result holds uniformly in b�n: �
Proof of Theorem 5.3. Under the local alternative, the re-scaled slope coe¢ cient
n1=4b�n is given by 

n�1=2
nX
t=1

�
� (zt�1)� �n

� �
� (zt�1)� �n

�0!�1 � 
n�1=2

nX
t=1

f (zt�1)
�
� (zt�1)� �n

�
+ n�1=4

nX
t=1

ut
�
� (zt�1)� �n

�!
= 

n�1=2
nX
t=1

� (zt�1) � (zt�1)
0

!�1
� 

n�1=2
nX
t=1

f (zt�1) � (zt�1) + n
�1=4

nX
t=1

ut� (zt�1)

!
+ op(1): (8.40)

The equality above follows because n1=2�n�
0
n and n

�1=2Pn
t=1 f (zt�1) �n areOp

�
n�1=2

�
by Assumption 2.3, 5.7 and Lemma 2.1(d); and since n�1=4

Pn
t=1 ut�n is Op

�
n�1=4

�
by Assumption 5.7 and Lemma 2.1(e). The Cramér-Wold device, Lemma 2.1(d),(e)

and Assumption 5.7 imply that

n�1=2
nX
t=1

� (zt�1) � (zt�1)
0 ! d`(1)

Z 1

�1
�(x)�(x)0dx; (8.41)

n�1=2
nX
t=1

f (zt�1) � (zt�1) ! d`(1)

Z 1

�1
f(x)�(x)dx: (8.42)

n�1=4
nX
t=1

ut� (zt�1)!d

�
�2u`(1)

Z 1

�1
�(x)�(x)0dx

�1=2
W (1); (8.43)
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whereW (r) is a Brownian motion independent of `(r): In fact, convergence in (8.41)-

(8.43) is joint. Hence, n1=4b�n converges in distribution to�Z 1

�1
�(x)�(x)0dx

��1 Z 1

�1
f(x)�(x)dx

+�u

�
`(1)

Z 1

�1
�(x)�(x)0dx

��1=2
W (1): (8.44)

Finally, by a similar argument as in the proof of Theorem 3.1(c), b�2u;n !p �
2
u. There-

fore, it follows from (8.44) that

Tn !d


�
`(1)

Z 1

�1
�(x)�(x)0dx

��1=2 Z 1

�1

f(x)�(x)

�u
dx+W (1)


2

: �

Proof of Theorem 5.4. The di¤erence between out-of-sample error functions is

Qn
�b�0;n; 0��Qn �b�n;b�n�

=
nX

t=[nr]+1

�
yt � b�0;n�2 � nX

t=[nr]+1

�
yt � b�0;n � �� (zt�1)� �[nr]�0 b�n�2

=
nX

t=[nr]+1

�
n�1=4f (zt�1) + ut

�2
�

nX
t=[nr]+1

�
n�1=4f (zt�1) + ut � � (zt�1)0 b�n�2 + op(1)

= �K1n + 2K2n + 2K3n + op(1): (8.45)

where

K1n = b�0n nX
t=[nr]+1

� (zt�1) � (zt�1)
0 b�n;

K2n = n�1=4
nX

t=[nr]+1

f (zt�1) � (zt�1)
0 b�n;

K3n =
nX

t=[nr]+1

ut� (zt�1)
0 b�n:
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The second equality in (8.45) follows by the argument similar to that in the proof of

Theorem 5.3, equation (8.40).

Next, let a1 and a2 be two constants, and W be a N (0; Ip) random vector. By

the same argument as in the proof of the second part of Lemma 1 of Chang and Park

(2003), we have that

a1n
�1=4

[nr]X
t=1

ut� (zt�1) + a2n
�1=4

nX
t=[nr]+1

ut� (zt�1)

! d�u
�
a21`(r) + a

2
2 (`(1)� `(r))

�1=2�Z 1

�1
�(x)�(x)0dx

��1=2
W:

Then, the Cramér-Wold device implies that

n�1=4
[nr]X
t=1

ut� (zt�1)

! d�u

�
`(r)

Z 1

�1
�(x)�(x)0dx

��1=2
W1; (8.46)

n�1=4
nX

t=[nr]+1

ut� (zt�1)

! d�u

�
(`(1)� `(r))

Z 1

�1
�(x)�(x)0dx

��1=2
W2; (8.47)

where W1; W2 are independent N (0; Ip) random vectors, and convergence is joint.

The following results follow from Assumptions 2.3, 5.7, Lemma 2.1(d), equations

(8.46) and (8.47), and hold jointly:

K1n !d (`(1)� `(r))

�Z 1

�1
�(x)�(x)0dx

��1=2 Z 1

�1
f(x)�(x)dx

+�u`
�1=2(r)W1

 ; (8.48)

K2n !d (`(1)� `(r))
Z 1

�1
f(x)�(x)0dx

�
 �Z 1

�1
�(x)�(x)0dx

��1 Z 1

�1
f(x)�(x)dx
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+�u

�
`(r)

Z 1

�1
�(x)�(x)0dx

��1=2
W2

!
; (8.49)

K3n !d �uW
0
2

�
(`(1)� `(r))

Z 1

�1
�(x)�(x)0dx

�1=2
�
 �Z 1

�1
�(x)�(x)0dx

��1 Z 1

�1
f(x)�(x)dx

+�u

�
`(r)

Z 1

�1
�(x)�(x)0dx

��1=2
W1

!
: (8.50)

The desired result follows from equations (8.45) and (8.48)-(8.50). �
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Figure 1: Simulated sample path of yt = f (zt�1) + ut, where f(x) = 10�(x), and � is
the standard normal density function
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Table 1: Simulated rejection rates of Fn test for 0.05 signi�cance level, di¤erent DGP�s
(f), values of the order of approximation (p) and signal-to-noise ratio (a)

p f1 f2 f3 f4
a = 1

1 0:115 0:113 0:112 0:103
2 0:126 0:108 0:121 0:121
3 0:142 0:136 0:136 0:133
4 0:176 0:165 0:157 0:136

a = 2
1 0:233 0:205 0:247 0:264
2 0:295 0:256 0:314 0:299
3 0:340 0:303 0:353 0:355
4 0:419 0:376 0:433 0:398

a = 4
1 0:411 0:355 0:459 0:556
2 0:536 0:457 0:603 0:782
3 0:594 0:556 0:665 0:878
4 0:691 0:629 0:748 0:906

a = 8
1 0:538 0:464 0:600 0:654
2 0:707 0:597 0:795 0:908
3 0:758 0:695 0:825 0:967
4 0:827 0:761 0:885 0:981
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Table 2: Proportion of simulation repetitions where the out-of-sample MSE of the
corresponding model is smaller than that of the historic average, for di¤erent DGPs
(f), values of the order of approximation (p) and signal-to-noise ratio (a)

integrable integrable
p polynomial linear ERP polynomial linear ERP

f1; a = 1 f1; a = 10
1 0:299 0:581 0:503 0:342 0:846 0:776
2 0:205 0:539 0:462 0:257 0:843 0:784
3 0:107 0:494 0:454 0:175 0:818 0:780
4 0:089 0:426 0:486 0:154 0:809 0:793

f2; a = 1 f2; a = 10
1 0:292 0:574 0:618 0:357 0:867 0:821
2 0:202 0:511 0:540 0:271 0:850 0:805
3 0:103 0:452 0:523 0:186 0:831 0:819
4 0:087 0:403 0:508 0:177 0:838 0:819

f3; a = 1 f3; a = 10
1 0:275 0:511 0:607 0:357 0:815 0:877
2 0:216 0:518 0:525 0:254 0:759 0:819
3 0:108 0:450 0:502 0:183 0:770 0:844
4 0:085 0:406 0:487 0:174 0:758 0:865

f4; a = 1 f4; a = 10
1 0:174 0:587 0:531 0:281 0:919 0:726
2 0:122 0:513 0:462 0:226 0:923 0:574
3 0:066 0:469 0:458 0:180 0:925 0:646
4 0:063 0:415 0:449 0:172 0:928 0:681
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Table 3: Simulated size and power of in-sample Tn and out-of-sample Sn tests for the
order of approximation p = 1, di¤erent DGPs (f), values of the signal-to-noise ratio
(a), and 0.05 signi�cance level

out-of-sample Sn
a in-sample Tn r = 1=4 r = 1=2 r = 3=4
0 0:050 0:049 0:051 0:056

f1
0:5 0:192 0:152 0:188 0:193
1 0:571 0:447 0:488 0:534
2 0:993 0:903 0:934 0:958

f2
0:5 0:154 0:134 0:161 0:147
1 0:454 0:357 0:389 0:374
2 0:969 0:821 0:845 0:809

f3
0:5 0:102 0:088 0:099 0:085
1 0:268 0:191 0:212 0:169
2 0:753 0:483 0:450 0:369

f4
0:5 0:178 0:147 0:179 0:163
1 0:541 0:424 0:475 0:399
2 0:990 0:875 0:915 0:773

Table 4: Unit root tests for the log of the dividend-price ratio.

intercept intercept and trend
autoregressive coe¢ cient 0:997 0:990
Phillips-Perron test

Zt statistic �0:702 �1:808
10% critical value �2:569 �3:132
KPSS test
statistic 2:969 0:500

1% critical value 0:739 0:216

Table 5: In-sample performance of the log of the dividend-price ratio

regression slope estimate t-statistic
OLS 0.0092 1.92

FM-OLS 0.0065 4.37
Integrable 1.7442 2.61
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Table 6: Out-of-Sample Root MSE �102, Sn test statistic and its estimated p-value
for di¤erent relative sizes of the training sample (r)

r 1=4 1=2 3=4
historic average 4:2223 4:4500 4:0765
linear regression 4:2812 4:4744 4:2521
integrable linear 4:2119 4:4232 4:0692
integrable ERP 4:2046 4:4235 4:0692
Sn statistic 0:7718 5:8269 0:5919
p-value of Sn 0:3419 0:3526 0:4519
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